
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1379
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Job Scheduling for Parallel Processing
Asst. Prof. Shubhada Talegaon

Parul Institute of Engineering And Technology

Abstract-The important topic in parallel computing is job scheduling. Parallel computing systems such as Supercomputers are
valuable resources which are commonly shared among each member of a community of users. The main concern of scheduling is
how to share the resources of parallel machines among the number of competing jobs, giving each the required level of service and
maximize system’s utility. Effective scheduling strategies to improve response times, throughput, and utilization are an important
consideration in large supercomputing environment. In this paper, I present the analysis of various job scheduling techniques such
as “Space sharing”, “Back filling” and “Gang scheduling”. I have even discussed how grid computing and certain current trends in
parallel processing improve the performance.

Index terms- Back filling, Gang Scheduling, Grid computing, Job Scheduling, Space Sharing

——————————  ——————————

1. INTRODUCTION
Parallel supercomputers are expensive, scare
recourses that often must be shared with
community of users. The resource allocation for
the competing jobs is done by system scheduler.
The scheduling on parallel computer is complex
since it involves scheduling over two
dimensions- time and space and two levels- jobs
and thread. The large verity of parallel
programming languages, parallel architecture
and parallel operating systems mean that there
is no universally accepted job scheduling
strategy for parallel system.

Jobs are continually submitted by users to the
system, each with unique resource and service-
level requirements, some with large batch jobs
and others with small interactive jobs. Proper
scheduling and resource allocation becomes
critical issue. Scheduling is an inherently
reactive discipline, mirroring trends in High
Performance Computing (HPC) architectures,
parallel programming language models, user
demographics and administrator priorities. No
scheduling strategy is optimal for all of today’s
scenarios.

In recent years, relative stability in the
aforementioned forces has gradually moved
large supercomputer installations towards
workable though imperfect de facto standards.
The production of large Massively Parallel

Processing (MPP) machines today centers
around Multiple Instruction Multiple data
(MIMD) architectures in pure or shared
distributed memory configurations, such as
Cache Coherent Non-Uniform Memory Access.
This architectural trend has given rise to the
supremacy of rigid programming models such
as Message Passing Interface (MPI) and
consequently of complementary scheduling
policies such as Batch queued space-sharing and
its variants. Concurrently, the rigidity and
explicit parallelism of MPI is slowly giving way
to alternative programming models which
challenge traditional scheduling.

In this paper, I illuminate the issues and
approaches that have defined how parallel jobs
are scheduled in today’s production
environments.

2. TERMINOLOGY:

• Job: Jobs are autonomous program that
execute in their own protection domain.
It is composed of multiple concurrent
threads submitted to the system for
execution. Each job is characterized
along two dimensions: its length as
measured by execution time and its
width or size as measured by the
number of threads; assumption is that
each of a job’s threads executed on a
separate processor.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1380
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

• Job scheduling: A discipline whose

purpose is to decide when and where
each job should be executed from the
perspective of the computing system.

• Time Sharing: It refers to any

scheduling approach whereby threads
can be preempted by others during
execution and restarted later.

• Multi programming level: The number
of jobs that each processor can execute
concurrently is known as the
multiprogramming level.

• Space-Sharing: Space-sharing

approaches provide a thread exclusive
use of a processor until its execution is
complete or a maximum time limit has
been over and the thread is terminated.
It manages time by placing each job in a
queue and executing all of its threads
concurrently upon release from that
queue.

• Interactive jobs: It require low latency

are usually executed using time-sharing

• Batch jobs: That require unperturbed
performance and are executed on
dedicated processors using space-
sharing

Supercomputing facilities often meet the
requirements of both Interactive and Batch job
categories by statically partitioning a machine’s
processors into time-sharing and space-sharing
subsets.

3. METRICS USED FOR

EVALUATION
Parallel job schedulers are mostly evaluated
using performance metrics, fairness matrix, and
Predictability metric.

Performance Metric:

A performance metric is a representation of how
quality of service from the system is interpreted.
The metric can be system based or user based.
System based metrics include utilization and
capacity loss. Common user based performance
metrics include average waiting time (AWT),
average response time (ART), average job slow-
down (AJSD) and throughput.

Fairness Metric:
Most scheduling algorithms make the minimum
fairness guarantee that no job will be starved,
that is, each job will eventually execute. Stronger
fairness guarantees are contingent on the
scheduling scheme. In space-sharing, fairness
may imply some first-come-first-serve (FCFS)
ordering or that a job will not be delayed by any
job that is behind it in the queue. In time-
sharing, it may be that each thread receives an
equal slice of the processor or a slice weighted
by the job size.

Predictability Metric:
Predictability is the gap between a job’s
responses or flow time and the user’s
expectation as created through previous
experience. Predictability can indirectly increase
productivity by enabling users to anticipate job
completion times and plan resource usage
accordingly. Some have proposed that
predictability, under other realistic assumptions,
may be even more central to the user experience
than performance.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1381
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4. JOB SCHEDULING ON MPP
SUPERCOMPUTERS

The dominant resource for parallel processing in
recent years has been the MPP supercomputer.
In this section I have focused on some ideas and
issues related to job scheduling on MPP
supercomputers.

4.1 Space-Sharing
The simplest way to schedule a parallel system
is with a queue. Each job is submitted to the
queue and, upon reaching the head, is executed
to completion while all other jobs wait. The
queue can be hypothetically FIFO, but the
scheme extends to priority queues without loss
of generality. Though providing maximum
fairness and predictability, this scheme is
inefficient. Since each application utilizes only a
subset of the system’s processors, those
processors not in the subset are left idle during
execution. This effect is known as fragmentation
and its reduction is the primary focus of much
scheduling research. The most natural extension
to the queue scheme is space sharing, which is
the simple idea of allowing another job in the
queue to execute on the idle processors if
enough are available. This is primarily how
supercomputers are scheduled today.

4.1.1 Backfilling
The most basic queued space-sharing approach
is known as blocking First-Come-First-Serve
(FCFS). Under this scheme, if sufficient idle
processors exist to serve the next job in the
queue, that job is executed. Otherwise, the
queue blocks until sufficient resources become
available. This approach remains prone to
severe fragmentation with system utilization
rates between 50-80%. Because the queue is only
accessed at the head, a wide job may block
others behind it from executing while it waits
for a large portion of the machine to become
available.
Backfilling is the idea that while the wide job
waits, the scheduler may choose to execute some
narrower jobs situated further back in the queue.

The question is, which job should jump ahead?
The first implementation of a backfilling
scheduler was the Extensible Argonne
Scheduling sYstem (EASY). The scheduler was
deployed on the Argonne National Laboratory’s
128-node IBM SP system and was successful
enough to be eventually incorporated into IBM’s
commercial LoadLeveler scheduling software.
EASY backfilling, as it has come to be known,
works by allowing a narrower job Jn, to jump in
front of a waiting wide job Jw, so long as the
execution of Jn does not delay the projected start
of Jw. The job furthest ahead in the queue that
satisfies these width and length requirements is
selected for backfilling. This scheme relies on a
significant assumption, that is, that job lengths
are known a priori. Argonne’s approach, which
preponderates today, was to simply ask the
users for an expected runtime. Though this
approach has proven serviceable, the problem of
job length estimation under disparate
assumptions has created an active field of
research as described in Section 4.1.2. The other
problem with EASY backfilling is fairness, as
cutting can cause unfairness even if not to the
job at the head of the queue. This is the
fundamental observation motivating conservative
backfilling.

Figure 1 EASY backfilling cause unfairness

Figure 1 demonstrates how this unfairness can
occur. In the figure, jobs are ordered from left to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1382
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

right and the Y axis represents the number of
processors. Job J0 is currently executing, leaving
too few processors to execute J1. The first job
that can satisfy the length and width
requirements of the EASY backfilling algorithm
is J3, so it is scheduled. However, though it has
no effect on J1, the execution of J3 delays the
start time of J2. Conservative backfilling only
backfills when the scheme causes no job to be
delayed.
The tradeoffs between conservative and EASY
backfilling can be generalized to a number of
reservations, where EASY backfilling makes a
single reservation for the job at the head of the
queue and conservative backfilling makes one
for each job in the queue.

4.1.2 Estimating Job Lengths
As mentioned in the previous section,
backfilling is predicated on knowledge of the job
lengths before execution. The approach taken by
Lifka’s EASY scheduler, to simply ask the users
to submit an expected runtime along with the
job, is in wide use today. Unfortunately,
estimates gathered in this manner are
notoriously inaccurate. Indeed, inaccurate
runtime estimates have profound effects on
fairness and predictability. Wildly exaggerated
runtime estimates result in greater system
throughput. This happens because the
premature termination of jobs causes
fragmentation in the schedule. In backfilling,
that fragmentation is ease by executing shorter
jobs from the back of the queue. It is no surprise
that this arrangement increases performance as
scheduling theory has long recognized that the
Shortest Job First (SJF) heuristic results in
optimal throughput SJF is not widely used on
today’s production installations because of its
inadequate fairness.
Erratic runtime estimates can also manifest
unfairness through a phenomenon known as
pseudo-delay. An example is shown in Figure 2.
Job J1 is prevented from executing at the same
time as J0. Relying on false runtime estimates,
the scheduler decides to backfill J2. Soon
thereafter, J0 completes execution, but J1 cannot
begin because of the decision to backfill J2. The

backfilling fairness guarantee that J1 would not
be delayed by any job behind it in the queue is
broken.

Figure 2: Example of pseudo-delay

Like fairness, system predictability also suffers
because of poor runtime estimates.

4.1.3 Predicting Queue Times
Queue time predictability can be correlated with
productivity through many scenarios. The most
obvious example is a user with accounts on
numerous machines who wants his job to finish
most quickly. More subtle is the lost utility
caused when the user’s job does not finishing in
time to provide useful output (e.g. a one day
weather simulation finishing in twenty five
hours) or the schedule disturbance caused when
the user submits to multiple sites in order to
guarantee the earliest possible start time.

4.2 Time-Sharing
The term time-sharing, or time-slicing, refers to
the sharing of a processor’s time among threads
of different parallel programs. In such
approaches, each processor executes a thread for
some time, pauses it, and begins executing a
new thread. Applications therefore exhibit short
wait times but execute more slowly than under
the dedicated set of processors provided by
space-sharing Time-sharing is most often used
to execute interactive jobs that do not necessarily

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1383
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

require peak performance. Interactivity is a
critical requirement if parallel processing is to
move beyond scientific supercomputing and
into widespread deployment. Parallel
processing on the desktop for example, is
interactive. The same is true of web application
infrastructures and consequently, many
dynamic grid computing scenarios.

4.2.1 Local Scheduling
The simplest way to implement a parallel time-
sharing scheduler is to run a uniprocessor
system on each node and share a global run
queue. Threads that are ready to execute are
placed in the queue. When a processor becomes
available, it simply removes the next thread
from the queue, executes it for some time, and
returns it to the back of the queue. This
approach was once widely used in small-scale
uniform memory access machines. An obvious
advantage of this approach is fairness. Each
thread receives an equal share of the machine
and priority mechanisms are straightforward to
enable. Local scheduling, however, is beset by
numerous shortcomings. Contention for the
global queue is a potential performance
bottleneck, frequent context switching disturbs
cache locality, and thread migration can be
costly across processors, particularly when large
chunks of data need be ported from one
memory bank to another. The inefficiency of
uncoordinated thread execution must be
addressed by a more application-centric
approach such as gang scheduling.

4.2.2 Gang Scheduling
The most accepted form of time-sharing is gang
scheduling, an approach by which all threads of
an application are executed concurrently as one
gang. This approach is regarded as a union of
space-sharing and time-sharing techniques and
has been shown to outperform local scheduling
in numerous studies.
Under gang scheduling, applications can
perform more fine-grained communications
without suffering a significant performance
further, since gang scheduling assigns threads to
processors, the approach enjoys all the benefits

of affinity scheduling, including some local
cache efficiencies and an obviated need for
memory porting.
Gang scheduling, however, is limited in other
respects. In addition to inheriting the drawbacks
of memory management and context switching
overheads from its time-sharing heritage, it also
inherits many of the fragmentation issues of
space-sharing several variations and relaxations
of gang scheduling have been proposed to
overcome this challenge.
One approach is dynamic co scheduling]. First
proposed for commodity clusters, DCS observes
that only threads that communicate often need
be scheduled together and attempts to reduce
fragmentation by scheduling each thread when
a message arrives for it another inefficiency of
gang scheduling, at least with respect to other
time-sharing approaches, is its handling of I/O-
intensive jobs. Such jobs cause degradation in
both processor and I/O efficiency because gang
scheduling fails to overlap I/O requests with
computation. Processor efficiency suffers when
threads idly await I/O results, neither making
progress nor allowing compute intensive
threads to execute

5. TRENDS IN PARALLEL
PROCESSING
There are however, several trends that are
reinvigorating the discipline and motivating
novel scenarios and studies in parallel
processing.

5.1 Parallelism in the Mainstream
Mainstream deployment of parallel applications
may also drive innovation in programming
models. OpenMP (Open Multi-Processing) for
example, a shared-memory programming
interface based on a fork-join model is making
inroads deep enough to marginalize purely
distributed memory architectures. OpenMP is
not alone. The Department of Defense’s High
Productivity Computer Systems program
constitutes an immense national effort to create
the next generation of High Performance
Computing (HPC) tools and architectures. All
three industry partners (Sun, IBM, and Cray) are

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1384
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

developing new programming languages to
accompany their architecture proposals.
Independently, Microsoft is also developing a
new version of C that eases the multi-threaded
programming burden through implicit
parallelism.

5.2 Grid Computing
A great source of new requirements for
supercomputer scheduling is grid computing.
Grid computing is the idea that a single
community of users can gain access to multiple
heterogeneous, physically distributed, and
independently administered machines through
a common interface. The purpose of grids is not
necessarily to build a single, immensely
powerful supercomputer, but rather to increase
the utility of the machines involved through
better load balancing and by exploiting
application affinities Grid computing does not
only create a new field of scheduling (grid
scheduling), but also directly impacts the
requirements of local schedulers. Because Grid
computing systems must respect site autonomy,
grid schedulers must be built to interface with
each machine’s local scheduler. In many
respects today’s local schedulers inadequately
support effective grid scheduling. The most
obvious obstacle is predictability. In order to
decide which site is best for a particular job, a
grid scheduler would have to determine the full
response time of the job for each site. The
unpredictability of queue wait times makes this
very difficult. Even more important is the case
when tasks need to be co- allocated, that is,
scheduled to run at the same time but on
different machines. This is a common
requirement in work-flow based grid
applications and is impossible to guarantee
without support from the local scheduler. In
response, some have proposed plan-based
scheduling schemes in place of queuing
approaches. Another feature of grid computing
that cannot exist without local scheduler
support is service level agreements. Such
agreements can be rather arbitrary

Lastly, if local schedulers still require runtime
estimates for each job, generating them
automatically is unavoidable. When a user
submits a job to a grid scheduler, he cannot be
expected to even know which machines the job
may run on, let alone provide a reasonably tight
runtime estimate for every possibility. The
estimate must be generated dynamically by the
grid and local schedulers.

6. CONCLUSION
Job scheduling on parallel machines is a well
studied research field that has led to widespread
de facto standards: queued space-sharing with
backfilling. This approach works well but can be
improved through many techniques including
automated runtime estimates, partial executions,
and more intelligent processor allocation
schemes.

Grid computing has created an entirely new
field of scheduling research aimed at the
efficient distribution of jobs across
heterogeneous and independently administered
machines. Concurrently, it is pressuring local
scheduling research to provide expanded
interfaces and re-evaluate scheduling objectives.

REFERENCE:

[1] Message Passing Interface Wikipedia

free encyclopedia

[2] OpenMP website openmp.org

[3] 10th Workshop on Job Scheduling

Strategies for Parallel Processing,

[4] D. G. Feitelson and L. R. L. Scheduling.

Parallel Job Scheduling: Issues and

Approaches.

[5] Grid computing :

 www.gridcomputing.com

[6] A. B. Downey. Using Queue Time

Predictions for Processor Allocation

IJSER

http://www.ijser.org/
http://www.gridcomputing.com/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 1385
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[7] Job Scheduling on Parallel Systems

Jonathan Weinberg University of

California,

IJSER

http://www.ijser.org/

